
Evidence for orthorhombic distortion in the ordered state of ZnCr2O4:
A magnetic resonance study

V. N. Glazkov,1 A. M. Farutin,1 V. Tsurkan,2,3 H.-A. Krug von Nidda,2 and A. Loidl2
1P. L. Kapitza Institute for Physical Problems, RAS, 119334 Moscow, Russia

2Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
3Institute of Applied Physics, Academy of Science of Moldova, MD-2028 Chişinǎu, Republic of Moldova
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We present an elaborate electron-spin-resonance study of the low-energy dynamics and magnetization in the
ordered phase of the magnetically frustrated spinel ZnCr2O4. We observed several resonance modes corre-
sponding to different structural domains and found that the number of domains can be easily reduced by field
cooling the sample through the transition point. To describe the observed antiferromagnetic resonance spectra,
it is necessary to take into account an orthorhombic lattice distortion in addition to the earlier reported
tetragonal distortion which both appear at the antiferromagnetic phase transition.
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I. INTRODUCTION

The intriguing physics of spinel compounds is the focus
of current solid-state research. The current hot debates on the
origin of exotic phenomena and ground states in magnetic
spinels concern, e.g., the Verwey transition in Fe3O4,1,2

heavy-fermion formation in LiV2O4,3,4 colossal magnetore-
sistance in Cu-doped FeCr2S4,5,6 gigantic Kerr rotation7 and
the orbital glass state in FeCr2S4,8 the spin-orbital liquid in
FeSc2S4,9 the colossal magnetocapacitive effect in CdCr2S4
and HgCr2S4,10,11 the negative thermal expansion and strong
spin-phonon coupling in ZnCr2Se4 and ZnCr2S4,12–14 the
spin dimerization in CuIr2S4 �Ref. 15� and MgTi2O4,16 and
the spin-Peierls-type transitions in three-dimensional
solids.17–19 The appearance of these fascinating ground states
is attributed to the competition of charge, spin, and orbital
degrees of freedom, which are strongly coupled to the lattice.

Additional complexity in the normal AB2X4 spinels arises
from the frustration effects related to the topological con-
strains of the pyrochlore lattice of corner-sharing tetrahedra
of the B-site magnetic ions. In this geometry, the exchange
interaction alone cannot select a unique ground state. As a
result, the magnetic system remains in the disordered state
down to temperatures much lower than the scale provided by
the exchange interaction. In ZnCr2O4 strong direct antiferro-
magnetic �AFM� Cr-Cr exchange is manifested by the Curie-
Weiss temperature of about −400 K, while magnetic order
appears around 12 K via a first-order phase transition. At this
transition the aforementioned degeneracy is lifted by a struc-
tural deformation, which is reported to be tetragonal.17

However, the structure of the magnetic phase of this com-
pound is not fully understood yet. Neutron-scattering experi-
ments have proven that noncollinear commensurate antifer-
romagnetic order is established below the transition
temperature but the details of the magnetic structure are still
under heavy debate. It was speculated that a multi-k structure
is formed.20,21 Moreover, sample-dependent intensities of the
magnetic reflections suggest that ZnCr2O4 is critically lo-
cated close to several spin structures.20

Magnetic resonance is a convenient tool to study low-
energy spin dynamics of the ordered magnets, since it ac-

cesses an energy scale unavailable by other techniques �be-
low 0.3 meV�. Earlier magnetic resonance studies either
were focused on the paramagnetic state22 or were done on
powder samples.23 The present study fills this gap and re-
ports results of a comprehensive magnetic resonance study in
the ordered phase of ZnCr2O4 done on high-quality single
crystals. Our observations indicate the presence of several
structural domains in the sample, which can be effectively
aligned by field cooling in a moderate magnetic field. We
observe several gapped resonance modes. We demonstrate
that the observed low-energy spin dynamics can be described
assuming a single noncollinear magnetic structure and ortho-
rhombic lattice symmetry in the ordered phase.

II. EXPERIMENTAL DETAILS

ZnCr2O4 single crystals were grown by chemical trans-
port reactions from polycrystalline starting material prepared
by solid-state reactions of stoichiometric binary zinc and
chromium oxides of 99.99% purity. Perfect single crystalline
samples of octahedral shape and dimensions up to 3 mm on
the edge were obtained. X-ray diffraction at room tempera-
ture revealed a single-phase material with the cubic spinel
structure with a lattice constant a=8.332�1� Å and an oxy-
gen fractional coordinate x=0.263�1�. The magnetic proper-
ties were studied using a commercial superconducting quan-
tum interference device �SQUID� magnetometer �Quantum
Design MPMS-5� working at fields up to 50 kOe.

Magnetic resonance measurements in the wide frequency
range from 20 to 150 GHz were performed at the Kapitza
Institute. For these measurements we have used a set of
home-made transmission-type electron-spin-resonance
�ESR� spectrometers equipped with a superconducting cryo-
magnet. High-sensitivity X-band �9.3 GHz� magnetic reso-
nance experiments were carried out using a Bruker “Elexsys
E500” continuous wave spectrometer equipped with an Ox-
ford Instruments helium gas-flow cryostat. Magnetic
resonance-absorption spectra were recorded at different fre-
quencies for three principal orientations of the magnetic
field: H � �001� , �110� , �111�. The measurements were mostly
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done on zero-field-cooled samples; the effect of field cooling
was checked at certain frequencies.

III. EXPERIMENTAL RESULTS

Figure 1 shows the temperature dependence of the mag-
netic susceptibility of ZnCr2O4 single crystals for the mag-
netic field applied along all three characteristic directions of
the cubic system. The susceptibility is isotropic above the
AFM transition temperature TN=12.5 K. At high tempera-
tures the susceptibility follows a Curie-Weiss law but devi-
ates already at about 100 K and develops a broad maximum
around 50 K indicative for short-range AFM correlations. At
TN one observes a discontinuous change in the data typical
for a first-order transition. In the magnetically ordered re-
gime, the magnetic susceptibility of the zero-field-cooled
sample shows a pronounced anisotropy with the highest
value for measurements along the �001� direction �for the
measurements in the field of 10 kOe�.

To investigate the anisotropy in more detail, the magneti-
zation was measured dependent on the magnetic field both
for zero-field cooling �ZFC� as well as after field cooling
�FC�. As shown in Fig. 2, the ZFC data in all orientations
manifest a nonlinear behavior of the magnetization �i.e.,
M /H�const� in fields up to 20 kOe and a linear increase in
the magnetization �M /H=const� for higher fields. A nonlin-
earity of the magnetization in the magnetically ordered state
is usually connected to the rotation of the order parameter �as
the orientation of the susceptibility tensor of the ordered
phase is bound to the order-parameter orientation�. The linear
increase in the M /H curve for H � �001� indicates a smooth
rotation of the order parameter in this orientation. For the
two other directions M /H is almost constant below 10 kOe
and above 20 kOe, while it changes strongly at around 15
kOe. This change in the susceptibility from a smaller value
to a larger one above the critical field is typical for a spin

flop. Field cooling was done here in a magnetic field of 50
kOe from above the transition temperature �approximately,
from 20 K�. It has only a weak effect for H � �001� but leads
to nearly constant M /H for the other two orientations. In the
field-cooled sample the largest value of magnetic susceptibil-
ity is observed for H � �110�.

The evolution of the resonance-absorption spectrum with
temperature is shown in Fig. 3. At high temperatures �in the
paramagnetic phase� a single absorption component with a g
factor close to 2.0 is observed. The transition to the antifer-
romagnetically ordered state is clearly marked by the discon-
tinuous transformation of the resonance-absorption spec-
trum. Below the Néel temperature TN, the absorption
spectrum consists of several components strongly shifted
from the paramagnetic resonance position. No hysteresis ex-
ceeding the resolution limit of 0.1 K was detected at the
transition. On cooling below TN the resonance lines first

FIG. 1. �Color online� Symbols: temperature dependences of the
magnetic susceptibility �=M /H in different principal orientations.
All curves are measured on cooling in a field of 10 kOe. Dashed
curve: high-temperature fit by a Curie-Weiss law with �=
−380 K.
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FIG. 2. �Color online� Field dependences of the magnetization
divided by field for the ZFC �open symbols� sample and FC �closed
symbols� for different orientations at T=2 K.
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FIG. 3. Field dependences of the microwave absorption at dif-
ferent temperatures �ZFC sample�. Inset: temperature dependence
of the resonance fields. The narrow line at H=13 kOe is a diphe-
nylpicrylhydrazyl �DPPH� �g=2.0� marker.
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show a pronounced shift, but below 5 K the temperature
dependence of the resonance positions is negligible.

The shape of the resonance-absorption spectra is strongly
affected by field cooling. Figure 4 compares the resonance
absorption measured on ZFC and FC samples. Here field
cooling was performed at a field of 50 kOe starting from 20
K. For H � �110� and �111�, field cooling leads to the disap-
pearance of some of the absorption components. The remain-
ing absorption components are usually slightly shifted from
the corresponding absorption component measured on the
ZFC sample. The vanishing absorption intensity does not
necessarily add to the remaining components: for example,
for H � �110�, the intensity of the remaining component after
field cooling is the same as for the ZFC sample. For H � �001�
field-cooling effects are less evident—all absorption compo-
nents are observed in FC samples; field cooling leads only to
a slight change in the absorption intensity.

Actually, application of a field of 50 kOe during the cool-
ing seems to be excessive. It is enough to cool the sample at
the moderate field of 18 kOe to suppress some of the reso-
nance modes as can be seen in the inset of Fig. 4. Especially,
the soft modes indicative for spin reorientation disappear af-
ter field cooling but reappear as the sample is rotated to
another crystallographically equivalent position. Note that
the nonlinearity of the magnetization curve also vanishes af-
ter field cooling for H � �110�.

The stability of the ZFC resonance absorption under pro-
longed exposure to the magnetic field below TN was also
checked by the high-sensitive X-band measurements. At 4 K
the shape of the resonance absorption is reproducible to the
finest details. However, at 8 K �which is still below TN�
keeping the H � �110�-oriented sample at 18 kOe for 90 min
leads to 30% reduction in the observed resonance absorption.

The angular dependence of the ESR absorption was mea-
sured at 9.3 GHz. As the sample is rotated around the �001�
axis �rotation axis perpendicular to the magnetic field�, the
resonance absorption is observed only in the close vicinity of
the �110�-like orientations of the applied magnetic field. As
the sample is rotated away from these orientations the reso-
nance absorption disappears. This finding indicates directly
that �110� is a symmetry chosen direction in the ordered
phase.

The entire frequency-field diagrams for the different ori-
entations of the magnetic field are given in Fig. 6. These
dependences demonstrate the presence of several resonance
modes with zero-field gaps of 21�2 GHz and
113�2 GHz. The higher gap value well corresponds to the
data of Ref. 23. For H � �110� and �111�, one of the resonance
modes softens in the magnetic field between 10 and 15 kOe.
Note that the nonlinearity of the magnetization curves is also
observed in the same field range for these directions �Fig. 2�.
Field cooling reduces the number of the observed resonance
modes to two: one for each of the zero-field gaps.

IV. DISCUSSION

A. Phase transition, domains, and field cooling

As documented above, the change in the resonance field
at the phase transition is discontinuous. In conventional
molecular-field approximation, the shift of the antiferromag-
netic resonance �AFMR� field with respect to the paramag-
netic resonance is proportional to the magnitude of the order
parameter, i.e., to the sublattice magnetization. The discon-
tinuous change in the resonance field at the phase transition
indicates that the order parameter is not small even just be-
low the transition temperature. This observation is in agree-
ment with the first-order nature of the phase transition in
ZnCr2O4.17,24

The magnetic susceptibility of the paramagnetic phase is
isotropic due to its cubic symmetry. The cubic symmetry is
lost in the ordered state because of the lattice deformation.
The lattice-strain direction can take one of the equivalent
crystallographic axes. The susceptibility tensor of the antifer-
romagnet is anisotropic, the orientation of its principal axes
is determined by the orientation of the order parameter, and
the latter is fixed by anisotropic interactions with respect to
the crystallographic axes. Therefore, the susceptibility ten-
sors of different structural domains are oriented differently
and the gain in the Zeeman energy is different for different
domains. Thus, the application of magnetic field makes one
of the domains more favorable. It provides an obvious
mechanism for the observed field-cooling effect and for the
instability of the resonance absorption close to TN described
in Sec. III. This assumption is in agreement with the increase
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FIG. 4. �Color online� Comparison of the resonance absorption
observed at 1.8 K in ZFC and FC samples for different orientations
of the magnetic field. Inset: field-cooling effect on the AFM soft
mode at T=4.2 K and f =9.4 GHz. After FC only the background
signal remains �due to frozen oxygen�.
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in the magnetic susceptibility in the field-cooled sample �Fig.
2�.

In the case of a cubic-to-tetragonal lattice transition, the
formation of the domain structure is well studied for fer-
roelastic systems. A complicated domain structure consisting
of thin twinned domains is usually formed in ferroelastics
�see, for example, recent Refs. 25 and 26�. Twinning allows
to avoid strong local strain at the contact of the domains with
different directions of deformation axes. The thickness of
twin domains observed in the doped ferroelastic high-
temperature superconducting compound YBa2Cu3O7 is about
10–100 nm.26 Twinning also leads to a slight tilting �of the
order of �a /a� of the domain axes from the corresponding
crystallographic axes of the high-temperature phase. While
the axes tilting is too small ��a /a�10−3� to be of impor-
tance, small domain thickness could result in excitation of
standing spin waves with k�1 /L �L is a domain thickness�
instead of a uniform k=0 oscillation. This size effect can be
a possible reason for the slight shift of the resonance-
absorption position in the FC sample marked in Sec. III.

The size effect allows to estimate the thickness of the
crystallographic domains. We assume a quadratic spectrum
of antiferromagnetic spin waves,

E = ��0
2 + �2k2. �1�

Here �0 is the k=0 gap in the spectrum of the antiferromag-
netic magnons, ��Ja �J denotes the exchange coupling con-
stant between nearest-neighbor spins at distance a�, and mag-
netic field H=0. From the magnetic resonance point of view,
the energy E in Eq. �1� is the zero-field gap of the AFMR
mode. If �k��0, the effective zero-field gap for the standing
spin waves is larger than that for the uniform oscillation by
�=�2k2 / �2�0�. Consequently, the resonance branches of the
monodomain �FC� sample should be shifted downward �on
the H-f plane� by � with respect to the resonance branches of
the multidomain �ZFC� sample: i.e., for the branches rising
with the field, the remaining absorption component of the FC
sample shifts at the given frequency to higher fields with
respect to its position in the case of the ZFC sample. This
slight shift is observed in the experiment �Fig. 4�; its magni-
tude does not exceed the half width of the absorption line.
We estimate � /h as 1 GHz �h is the Planck constant�. Then,
the domain thickness can be estimated as

L

a
�

J
��0�

, �2�

which yields �substituting J /kB=20 K �Ref. 27� and �0 /h
=20 GHz	 L /a�100	1.

In further discussion, we assume that the domains are
thick enough to be considered as bulk antiferromagnet and
that the domain walls do not contribute to the magnetic reso-
nance absorption.

B. Application of the exchange-symmetry theory

The theory of exchange symmetry28 provides a conve-
nient formalism for the analysis of the low-energy dynamics
of a magnetically ordered system. This approach allows to

describe all symmetry-based low-energy properties of a mag-
net without considering its detailed microscopic structure or
any model assumption. It was successfully applied for differ-
ent magnets with complicated magnetic structures, e.g., the
garnet Mn3Al2Ge3O12,

29 the triangular antiferromagnet
CsNiCl3,30 and the rare-earth pyrochlore Gd2Ti2O7.31 It is
valid as long as the magnetic-order-parameter structure is
determined by the exchange interaction, while the magnetic
field and relativistic interactions affect only the orientation of
the order parameter but not its structure. Under this assump-
tion, the antiferromagnetic order parameter can be repre-
sented by at most three unitary orthogonal antiferromagnetic
vectors l�i� which transform by irreducible representations of
the crystal-symmetry group. The number of vectors and
these representations define the exchange symmetry of the
magnet; e.g., in the simplest case of a collinear antiferromag-
net, the order parameter is a single antiferromagnetic vector
parallel to the sublattice magnetization. For the case of a
noncollinear antiferromagnet the order parameter consists of
two �for the planar structure� or three antiferromagnetic vec-
tors. In the following discussion in the case of a planar mag-
netic structure �i.e., only two vectors�, we denote for the sake
of simplicity l�3�= �l�1�
 l�2�	. The antiferromagnetic vectors
l�i� coincide with the eigenvectors of the susceptibility tensor
of the antiferromagnet.

The dynamic equations are derived using a Lagrangian
formalism. The kinetic energy of the homogeneous oscilla-
tions of a noncollinear antiferromagnet is given by28

K =
1

2�2

��

����
� + �H���
� + �H�� , �3�

where � is the gyromagnetic ratio of the free electron, ��� is
the susceptibility tensor, and � is the angular velocity of the
order-parameter rotation in the spin space. The kinetic en-
ergy can be rewritten via the components of the order param-
eter and their time derivatives �see Appendix B for details�
yielding the Lagrange function,

L = 

i

Ii

2
�l̇�i� − ��l�i� 
 H	�2

− Ua. �4�

Here the constants Ii are related to the susceptibility eigen-
values �see Appendix B� and the term Ua includes small
relativistic corrections to the main exchange part due to spin-
orbital and dipole-dipole effects. These corrections can be
expanded by the components of the antiferromagnetic vec-
tors. The Lagrange function must be invariant under all
transformations of the crystallographic symmetry group,
which results in some relations between the coefficients in
Ua expansion. These relations vary for different exchange-
symmetry groups.

The dynamic equations are obtained by taking a varia-
tional derivative of the Lagrangian �4� over the rotations of
the spin space. These equations should be linearized near the
equilibrium position to obtain the eigenfrequencies of small
oscillations. In general case, if the magnetic field is not
aligned along one of the antiferromagnetic vectors, the equi-
librium positions cannot be determined analytically. To
model the observed frequency-field dependences, we per-
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form numerical calculations of the oscillation eigenfrequen-
cies. We use standard minimization routines to find an equi-
librium orientation of the order parameter. This modeling
procedure is combined with a fitting algorithm using the con-
stants Ii and the coefficients of the Ua expansion as fit pa-
rameters. The static properties are described within the same
model and by the same parameters. Knowing the constants Ii
and the orientation of the order parameter it is easy to find
the susceptibility tensor.

The equilibrium position and eigenfrequencies of the
order-parameter precession are insensitive to the simulta-
neous scaling of the Ii parameters and parameters of the Ua
expansion. Thus, to simplify calculations, we locked the I3
parameter value to 1.00 kOe2 /GHz2.

When performing the expansion of the relativistic correc-
tions, it is necessary to take into account that in the case of
ZnCr2O4 the magnetic unit cell is larger than the crystallo-
graphic one.21,32 Therefore some components of the order
parameter are not invariant under some of the translational
elements of the crystallographic symmetry group. Since the
crystal-symmetry group D2d

9 suggested in Ref. 21 has a point
symmetry D2d in the vertex of the crystallographic cell, we
will focus primarily on the point-symmetry subgroup. Note
that this special property remains for all subgroups of D2d

9 .
Thus, in discussing the lowering of the lattice symmetry be-
low TN to D2

7, we will focus primarily on the point-symmetry
subgroup.

Although some representations of D2d allow weak ferro-
magnetism, the susceptibility measurements do not reveal
any spontaneous magnetization. This can be either due to the
spontaneous magnetization being too small or, more likely,
there is no weak ferromagnetism for the exchange group in
the present case. Therefore, we will not take weak ferromag-
netism into account in further discussion.

C. Evidence for orthorhombic distortions below TN

Here we will demonstrate that the assumption of the te-
tragonal lattice symmetry in the ordered phase contradicts
the experimental observation described in Sec. III and the
explanation of the experimental findings requires a further
reduction to orthorhombic symmetry.

First, we note that the symmetry of the magnetic structure
below TN is lower than tetragonal. This statement follows
directly from the observation of the distinct field-cooling ef-
fect for H � �111� since this field orientation is equivalent for
all tetragonal domains.

We will characterize each domain by the orientation of the
orthogonal basis “xyz” with the z axis coinciding with the
tetragonal deformation direction �i.e., S4 axis for the D2d lat-
tice symmetry�. By x and y we will denote the directions of
the twofold axes perpendicular to the z axis. Since the mag-
netic symmetry is lower than tetragonal, the x and y direc-
tions are not equivalent at least for the magnetic domain.

For the tetragonal lattice deformation only three types of
different crystallographic domains, differing by the direction
of the tetragonal axis z �z � �001	 , �010	 , �001	�, can be
formed at the transition. Then, two types of magnetic do-
mains with different choice of x and y axes can be formed in

each crystallographic domain. To find possible orientations
of the x and y axes of each domain, one should consider that
the reduction in the point symmetry from Oh to D2d could be
done in two ways: �i� by removal of the �100	 and �010	
symmetry axes as well as �110� and �11̄0� mirror planes and

�ii� by removal of the �110	 and �11̄0	 symmetry axes as well
as �100� and �010� mirror planes with the former fourfold
axes �100	 and �010	 becoming twofold axes. In the second
choice of axes, the magnetic field aligned along the �111�
direction would be equivalent for all domains and there
would be no reason for the observed field-cooling effects.
Thus, the first possibility has to be realized. �Identification21

of the tetragonal group D2d
9 as I4̄m2 also points to the first

possibility, while the second case would result in the differ-

ent choice of axes and would be identified as F4̄2m.� There-
fore, x and y axes are aligned along the diagonals of the
cubic facets.

These considerations allow to classify all possible do-
mains by the orientation of their “xyz” basis with respect to
the cubic axes of the paramagnetic phase as shown in Table
I and on Fig. 5. Some of these domains appear to be equiva-
lent in the particular experimental conditions �here x ,y ,z are
the unit vectors in the corresponding directions; trivial cases
are combined�,

H � �001	

domains �a� and �b�: H �z,
domains �c�, �d�, �e�, and �f�: H �x+y,

H � �110	

domain �a�: H �x,
domain �b�: H �y
domains �c�, �f�, �d�, and �e�: H � x+y

�2
+z,

H � �111	

domains �a�, �c�, and �e�: H ��2x+z
domains �b�, �d�, and �f�: H ��2y+z.

Note that for the H � �111� field orientation, there are only
two types of different magnetic domains. As one can see
from the experimental data in Fig. 6, we observe five reso-
nance branches in this orientation: two originating from the
higher gap, two originating from the lower gap, and one in
the high-field–low-frequency part of the frequency-field dia-

TABLE I. Classification of the AFM domains with respect to the
cubic axes of the paramagnetic phase.

Domain x y z

�a� �110	 �1̄10	 �001	

�b� �11̄0	 �110	 �001	

�c� �101	 �101̄	 �010	

�d� �1̄01	 �101	 �010	

�e� �011	 �01̄1	 �100	

�f� �011̄	 �011	 �100	
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gram. The observation of this fifth branch indicates the exis-
tence of a third zero-field gap which is not observed directly
and is less or equal in magnitude than the lowest-observed
gap of 21 GHz.

To apply the exchange-symmetry theory as described in
Sec. IV B it is necessary to specify the symmetry of the order
parameter. The point-symmetry group D2d has two-
dimensional and one-dimensional irreducible representa-
tions. If l�1� and l�2� transform by a two-dimensional repre-
sentation then I1= I2 and the relativistic contribution to the
Lagrangian �4� has the form,

Ua =
1

2
A��lx

�1��2 + �ly
�2��2	 + B�lx

�1�ly
�2� + ly

�1�lx
�2��

+ C�lx
�1�ly

�2� − ly
�1�lx

�2�� +
1

2
D�lz

�3��2. �5�

If l�1� and l�2� transform differently under translations then
B=C=0. In the other fundamental case, if l�1� and l�2� trans-
form by one-dimensional representations, the relativistic
contribution reads as

Ua =
1

2
A�lz

�1��2 +
1

2
B�lz

�2��2 + C�lx
�1�ly

�2� − ly
�1�lx

�2�� �6�

or

Ua =
1

2
A�lz

�1��2 +
1

2
B�lz

�2��2 + C�lx
�1�ly

�2� + ly
�1�lx

�2�� . �7�

Depending on the coefficients of the Ua expansion, there are
two general possibilities: �i� the l�i� lie in the �xz� and �yz�
planes and �ii� the l�i� lie in the planes including the z axis

and the bisector of the �xy� plane �i.e., in the D2d group
mirror planes�. ZnCr2O4 could correspond only to the first
case, since in the second case for H � �111� the order-
parameter vectors l�1�, l�2�, and l�3� in all magnetic domains
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FIG. 5. �Color online� Orientation of the domains’ “xyz” bases
with respect to the cubic axes of the high-temperature unit cell.
Tetragonal strain is shown out of scale. ��a�–�f�	 Domains enumera-
tion is the same as elsewhere in the text.

FIG. 6. �Color online� Frequency-field dependences of the reso-
nance modes for the principal cubic orientations �open symbols:
ZFC; closed symbols: FC�. The numeric calculations �lines� are
based on Eq. �9�. Fit parameters: see text.
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form the same angles with the field direction, which should
result in the absence of the field-cooling effects.

We tried to fit the experimentally observed frequency-
field dependences applying the exchange-symmetry theory
as described above with different forms of Ua �Eqs. �5�–�7�	.
However, we did not reach any reasonable agreement of the
modeled curves with the experiment. The main problem ap-
pearing during numerical modeling is the instability of the
domain demonstrating a spin-reorientation transition above
the transition field. The reason of this disagreement can be
explained qualitatively: namely, it can be proven �see Appen-
dix A� that for the tetragonal D2d lattice symmetry the do-
main manifesting a spin-reorientation transition becomes in-
distinguishable from the other domains above the transition
field. This is due to the fact that even for a magnetic sym-
metry lower than tetragonal, the anisotropic contribution Ua
reflects the tetragonal crystal symmetry. Thus, after the spin-
reorientation transition, the reoriented domain appears to be
in a state with the Zeeman energy lower than before reorien-
tation but with the same value of the anisotropic term Ua.
The equivalence of the magnetic domains above the transi-
tion should provide the same magnetic resonance frequencies
above the spin-flop transition. Moreover, there would be no
reason for these domains to split again as the magnetic field
is reduced to zero. This, however, contradicts the experimen-
tal observation of the specific resonance modes correspond-
ing to the domain undergoing a spin reorientation above the
spin-flop field, as well as to the reproducibility of the low-
field domain structure.

The problem can be solved by the assumption that the
lattice deformation at TN involves not only a compression
along the z direction but also a weak in-plane deformation
leading to further reduction in the symmetry. The highest
symmetry subgroups of D2d are S4, D2, and C2v. The S4
symmetry could be excluded since there are no selected di-
rections in the plane orthogonal to the symmetry axis in this
case. Thus the orientation of the order parameter in the �001�
plane is arbitrary; it is defined by the interplay of different
interactions. This conclusion contradicts to the experimental
finding that the �110� orientation is the selected direction.
The C2v subgroup could be excluded since in this case se-
lected directions perpendicular to the C2 axis lie within the
mirror planes, i.e., along �100� and �010�—which again con-
tradicts to the experimental finding that the �110� orientation
is the selected direction. Therefore, our choice is limited to
D2 point symmetry �the corresponding space subgroup of
D2d

9 is D2
7 �F222�	 with second-order axes along �001� direc-

tions �z� and along �110� directions �x and y�. This assump-
tion provides inequivalent crystallographic domains differing
by the x and y directions. These structural domains can be
classified by the orientation of their “xyz” basis in the same
way as the magnetic domains. The assumed orthorhombic
distortions were not detected in the earlier structural
studies,17,21 most likely because they are smaller than the
experimental resolution.

D. Modeling of the static and dynamic properties for the case
of orthorhombic distortions

We modeled the antiferromagnetic resonance frequency-
field dependences assuming orthorhombic distortions below

TN. As was explained above, to write down the expansion of
Ua we will focus again on the point-symmetry group. The D2
symmetry group has four one-dimensional representations.
There are only four fundamentally different cases; the others
can be reduced to them by renaming the axes x and y or
vectors l�1� and l�2�,

Ua =
A

2
�lz

�1��2 +
B

2
�lz

�2��2 +
C

2
�lx

�1��2 +
D

2
�lx

�2��2

+ E�lx
�1�ly

�2� − ly
�1�lx

�2�� + F�lx
�1�ly

�2� + ly
�1�lx

�2�� , �8�

Ua =
A

2
�lz

�1��2 +
B

2
�lz

�2��2 +
C

2
�lx

�1��2 +
D

2
�lx

�2��2

+ E�ly
�1�lz

�2� − lz
�1�ly

�2�� + F�ly
�1�lz

�2� + lz
�1�ly

�2�� , �9�

Ua =
A

2
�lz

�1��2 +
B

2
�lz

�2��2 +
C

2
�lx

�1��2 +
D

2
�lx

�2��2

+ Elz
�1�lz

�2� + Flx
�1�lx

�2�, �10�

Ua =
A

2
�lz

�1��2 +
B

2
�lz

�2��2 +
C

2
�lx

�1��2 +
D

2
�lx

�2��2. �11�

Here we again exclude weak ferromagnetism from the con-
sideration. The choice between Eqs. �8�–�11� is determined
by the details of the order-parameter symmetry. In the first
case �Eq. �8�	 the spin vectors l�1� and l�2� transform like x
and y, respectively �or vice versa�, while in the second case
�Eq. �9�	 they transform like y and z. For both of these cases
their transformations under translations should be the same.
The next form of energy �Eq. �10�	 is feasible if the spin
vectors transform by the same one-dimensional irreducible
representation of the full crystal-symmetry group. If under
some translation the vector l�1� changes its sign and the vec-
tor l�2� does not, no invariant terms of form l�

�1�l�
�2� can be

formed which results in the form of energy �11�.
The low symmetry of the ordered state results in too many

free parameters in the equations of spin dynamics �four to six
coefficients in the Ua expansion and two of the three Ii con-
stants�. By fixing the zero-field gaps of the AFM resonance
spectra, we can put only three analytical constraints on these
parameters. Other constraints are expected to appear during
the fitting of the modeled AFM resonance spectra. This in-
volves too many degrees of freedom for the assumptions on
the sort of equilibrium position, the way the spin-flop transi-
tion takes, and the correspondence between structural do-
mains and resonance branches. The reasonable agreement of
the modeled curves with the experiment could be obtained
for any of the Ua expansions �8�–�10�. Namely, the zero-field
gaps and spin-reorientation transitions could be reproduced,
high-field slopes of different AFM resonance branches could
be modeled to the correct values, and crossings and anti-
crossings of the certain branches could be achieved. Since all
these best fits are obtained with essentially nonzero param-
eters E or F, we are quite confident that the form of Ua given
by Eq. �11� is incompatible with the experimental data �since
Eq. �11� is, formally, a particular case of the other equations
for E=F=0	. However, we cannot exclude any of the possi-
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bilities described by Eqs. �8�–�10� judging from our results
only; one needs additional data on the magnetic structure to
select one of these cases. Here we present the results of
modeling in the case of Ua taken in the form �9�. The param-
eter values used for the computation of the modeled curves
are �=2.8 GHz /kOe, I1=3.93 kOe2 /GHz2, I2
=0.95 kOe2 /GHz2, I3=1.00 kOe2 /GHz2, A=66

103 kOe2, B=3.4
103 kOe2, C=−6.2
103 kOe2, D=
−5.7
103 kOe2, E=−8.7
103 kOe2, and F=0. The F pa-
rameter was fixed to zero to speed up the fitting procedure;
the I3 constant was locked to 1.00 kOe2 /GHz2 as described
above.

From Fig. 6 one can see that the correspondence of the
model and experiment is fairly good. The correct quantity of
resonance branches is obtained. The values of the zero-field
gaps are in good agreement with the experimental data. For
orientations H � �110� and �111�, the spin-reorientation tran-
sitions of certain domains are well reproduced. This model-
ing indicates that the frequency-field dependences can be
reasonably reproduced assuming a single type of order pa-
rameter and taking into account all possible domains. There
are really just two types of discrepancies between the experi-
mental data and modeled curves: first, there are predicted
low-frequency modes at high fields which are not observed;
second, for the orientation H � �110� the modes corresponding
to the domain with lowest energy �H �x� are far from the
experimental data corresponding to the domain stable under
field cooling �see the fit curves and experimental data
marked by a, a�, b, and b� in the lower panel of Fig. 6�.
These discrepancies can be due to the following reasons. In
the ESR experiments at 9 GHz, fields up to only 18 kOe
were available, whereas above 18 GHz the frequency-field
dependences of the low-frequency modes in question are
rather flat. In the case of I2= I3, they become field indepen-
dent which results in a strong broadening of the resonance
modes in the experiments at fixed frequency. Thus, these
modes cannot be detected in a field scan. Concerning the
discrepancy for the H �x domain, note that the modeled
curves still demonstrate an “anticrossing.” This feature,
probably, can be enhanced by varying the parameter sets �for
we cannot exclude that we did not miss some prominent
areas of the parameter space during numerical search for the
best fit� or by higher-order terms in the energy expansion.

We also modeled static magnetic properties with the same
set of parameters. The results of this modeling are shown in
Fig. 7. This modeling demonstrates that the spin-
reorientation transition is realized by a continuous rotation of
the order parameter as shown, e.g., for the y domain in the
inset of Fig. 7. This explains the absence of a sharp change in
the magnetization at the spin-reorientation transition. The
field dependence of the magnetization is qualitatively well
reproduced. It demonstrates a nonlinear behavior with a
characteristic change during the spin reorientation for the
unfavorable domains �see top panel of Fig. 7�, which disap-
pear after field cooling, and an almost linear behavior for the
favorable domains which remain after field cooling. The en-
ergy difference between different domains shown in the up-
per frame of this figure explains the observed field-cooling
phenomena. The domains corresponding to the modes sur-
viving the field cooling have the lowest energy in the mag-

netic field. For the orientation H � �111� the calculated energy
difference between the domains is similar and, thus, the
field-cooling effect is comparable to the case H � �110�. For
H � �001�, this difference is much smaller which can probably
explain the much weaker field-cooling effect for this direc-

FIG. 7. �Color online� Upper frame: calculated field depen-
dences of the energy difference for various domains. The calcula-
tions are done for the same parameters as used for the AFM reso-
nance spectrum shown in Fig. 6. Middle frame: calculated
magnetization of the domains with unfavorable orientation. Inset:
calculated field dependences of the Euler angles for the H � �110� y
domain. Lower frame: calculated magnetization of the domains
with favorable orientation of the order parameter.
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tion. However, we have to admit the problem in reproducing
the experimentally observed anisotropy of the field-cooled
magnetization at low fields. The experimentally highest sus-
ceptibility for the monodomain FC sample is observed for
H � �110� �Fig. 2�, while the modeled curves for the presented
parameter set indicate a slightly higher susceptibility for the
most favorable domain in the H � �100� orientation �Fig. 7�.
Note that the modeled difference of the three favorable do-
mains is tiny; thus for low fields some weak effects related to
shape anisotropy or surface effects may destroy the stability
of the uniform magnetization.

Summarizing the results of our modeling, we conclude
that the low-energy dynamics and static properties of the
ordered phase of ZnCr2O4 can be described by the assump-
tion of a single type of magnetic order and of the orthorhom-
bic lattice distortions below TN. This puts a question mark on
the possibility to realize different spin structures in ZnCr2O4
as suggested earlier.20 We suppose that the complications in
the determination of the magnetic structure of ZnCr2O4 by
neutron scattering were caused by the unaccounted ortho-
rhombic deformations and effects of multiple domains.

V. CONCLUSIONS

We have performed a detailed study of the low-energy
dynamics of the ordered phase of the frustrated antiferromag-
netic spinel ZnCr2O4. We have proven directly that multiple
domains exist below the transition temperature TN. We have
demonstrated that some of these domains are effectively sup-
pressed by field cooling. Spin-reorientation transitions indi-
cated by softening of certain antiferromagnetic resonance
modes and by nonlinear behavior of the magnetization are
observed.

These results are incompatible with the earlier proposed
symmetry of the distorted lattice. Thus, we conclude that the
lattice deformation at the phase transition involves small in-
plane distortions besides the tetragonal distortions. We sug-
gest that the actual symmetry of the lattice below TN corre-
sponds to the orthorhombic D2

7 symmetry.
We have demonstrated that the low-energy dynamics can

be reasonably described within the framework of the
exchange-symmetry theory, assuming a noncollinear mag-
netic ordering characterized by a single order parameter.
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APPENDIX A: INSTABILITY OF CERTAIN DOMAINS IN
CASE OF TETRAGONAL LATTICE SYMMETRY

Here we will prove that for the D2d point symmetry at the
spin-reorientation transition, the domain demonstrating this
transition becomes indistinguishable from the other domains.

First we consider the case when l�1� and l�2� transform by
two-dimensional representation of D2d. Minimizing the en-
ergy �5� we get the orientation of the order parameter in the
absence of magnetic field. For �B�� �A� the solution consists
of vectors lying in the mirror planes, which is not the case of
ZnCr2O4 �see above�. For �A�� �B� and A�0 the two solu-
tions are l�1� �x and l�2� lying in the �yz� plane and l�2� �y and
l�1� lying in the �xz� plane. The case of A�0 can be reduced
to this one by renaming the axes x and y. These solutions
define two different magnetic domains. If the susceptibility
along l�3� is less than along l�1� and l�2� then for H �x one of
the domains is already in its minimum of the Zeeman energy.
The other one is not in the minimum and at some value of
magnetic field it will undergo a spin-reorientation transition.
As it turns out, there is only one possible state for it after the
transition, the same as for the first domain. So after the spin
flop these two domains will be indistinguishable. If the sus-
ceptibility along l�1� and l�2� is less than along l�3�, both do-
mains are not in the minimum of the Zeeman energy when
the field is applied along the x axis. After the spin flop, both
domains again become indistinguishable.

Now we consider the case when l�1� and l�2� transform by
one-dimensional representations of D2d. To define the orien-
tation of the order parameter, we minimize the energy �6�.
We get the result that one of the vectors �let it be l�1�� is
aligned in the �xy� plane, but its orientation in this plane
remains arbitrary. To find a solution, it is necessary to take
into account the next-order terms in the Ua expansion. There
is no need to write down all of them; just note that due to the
tetragonal symmetry the dependence of Ua on the angle �
between l�1� and x is F cos�4��. There are two sets of solu-
tions depending on the sign of F. For F�0 the solutions are
�=� /4,3� /4,5� /4,7� /4, i.e., l�1� lies in the mirror plane,
which is not the case of ZnCr2O4. For F�0 the solutions are
�=0,� /2,� ,3� /2. These solutions define two magnetic do-
mains: for one of them l�1� �x and for the other l�1� �y. First,
no matter along which l�i� the susceptibility is largest, a spin-
reorientation transition is expected for H � �x�y� �i.e.,
H � �001��. This spin reorientation is either rotation of the
order parameter around the z axis by � /4 or, in the special
case of the largest susceptibility being along the z axis, rota-
tion of the largest susceptibility direction to the �xy� plane.
However, such a transition is not observed in our experi-
ments. Second, the spin-flop transition observed at H � �111�
can be caused only by rotation of the order parameter around
the z axis, but after this rotation both domains become indis-
tinguishable.

APPENDIX B: DEDUCTION OF THE KINETIC-ENERGY
EXPRESSION

First, since eigenvectors of the susceptibility tensor ���

coincide with the antiferromagnetic vectors l�1,2,3�, one can
rewrite,

EVIDENCE FOR ORTHORHOMBIC DISTORTION IN… PHYSICAL REVIEW B 79, 024431 �2009�

024431-9



���

�2 = �I2 + I3�l�
�1�l�

�1� + �I1 + I3�l�
�2�l�

�2� + �I1 + I2�l�
�3�l�

�3�

= 

i

Ii���� − l�
�i�l�

�i�� . �B1�

Here I1= �−�1+�2+�3� / �2�2�, I2= ��1−�2+�3� / �2�2�, and
I3= ��1+�2−�3� / �2�2�, �1,2,3 are the susceptibilities along
l�1,2,3�, correspondingly, � is a gyromagnetic ratio.

Then, expressing the time derivative l̇�i� via the angular
velocity � and using the fact that l�i� are unitary vectors, one
can write down the following equalities:

l̇�i� = �� 
 l�i�	 , �B2�

�l̇�i��2
= �2 − �� · l�i��2, �B3�

�l�i�, l̇�i�	 = � − l�i��� · l�i�� . �B4�

Directly substituting Eqs. �B1�–�B4�, one can straightfor-
wardly prove that
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Ii

2
�l̇�i� − ��l�i� 
 H	�2

=
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2�2

��

����
� + �H���
�

+ �H�� . �B5�

1 D. J. Huang, C. F. Chang, H.-T. Jeng, G. Y. Guo, H.-J. Lin, W. B.
Wu, H. C. Ku, A. Fujimori, Y. Takahashi, and C. T. Chen, Phys.
Rev. Lett. 93, 077204 �2004�.

2 I. Leonov, A. N. Yaresko, V. N. Antonov, M. A. Korotin, and V.
I. Anisimov, Phys. Rev. Lett. 93, 146404 �2004�.

3 S. Kondo, D. C. Johnston, C. A. Swenson, F. Borsa, A. V. Ma-
hajan, L. L. Miller, T. Gu, A. I. Goldman, M. B. Maple, D. A.
Gajewski, E. J. Freeman, N. R. Dilley, R. P. Dickey, J. Merrin,
K. Kojima, G. M. Luke, Y. J. Uemura, O. Chmaissem, and J. D.
Jorgensen, Phys. Rev. Lett. 78, 3729 �1997�.

4 A. Krimmel, A. Loidl, M. Klemm, S. Horn, and H. Schober,
Phys. Rev. Lett. 82, 2919 �1999�.

5 A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature �London�
386, 156 �1997�.

6 V. Fritsch, J. Deisenhofer, R. Fichtl, J. Hemberger, H.-A. Krug
von Nidda, M. Mücksch, M. Nicklas, D. Samusi, J. D. Thomp-
son, R. Tidecks, V. Tsurkan, and A. Loidl, Phys. Rev. B 67,
144419 �2003�.

7 K. Ohgushi, T. Ogasawara, Y. Okimoto, S. Miyasaka, and Y.
Tokura, Phys. Rev. B 72, 155114 �2005�.

8 R. Fichtl, V. Tsurkan, P. Lunkenheimer, J. Hemberger, V. Fritsch,
H.-A. Krug von Nidda, E.-W. Scheidt, and A. Loidl, Phys. Rev.
Lett. 94, 027601 �2005�.

9 V. Fritsch, J. Hemberger, N. Büttgen, E.-W. Scheidt, H.-A. Krug
von Nidda, A. Loidl, and V. Tsurkan, Phys. Rev. Lett. 92,
116401 �2004�.

10 J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von
Nidda, V. Tsurkan, and A. Loidl, Nature �London� 434, 364
�2005�.

11 S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan,
and A. Loidl, Phys. Rev. Lett. 96, 157202 �2006�.

12 J. Hemberger, H. A. Krug von Nidda, V. Tsurkan, and A. Loidl,
Phys. Rev. Lett. 98, 147203 �2007�.

13 J. Hemberger, T. Rudolf, H.-A. Krug von Nidda, F. Mayr, A.
Pimenov, V. Tsurkan, and A. Loidl, Phys. Rev. Lett. 97, 087204
�2006�.

14 T. Rudolf, C. Kant, F. Mayr, J. Hemberger, V. Tsurkan, and A.
Loidl, Phys. Rev. B 75, 052410 �2007�.

15 P. G. Radaelli, Y. Horibe, M. J. Gutmann, H. Ishibashi, C. H.
Chen, R. M. Ibberson, Y. Koyama, Y. S. Hor, V. Kiryukhin, and

S. W. Cheong, Nature �London� 416, 155 �2002�.
16 M. Schmidt, W. Ratcliff, P. G. Radaelli, K. Refson, N. M. Har-

rison, and S. W. Cheong Phys. Rev. Lett. 92, 056402 �2004�.
17 S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff II, and S.-W.

Cheong, Phys. Rev. Lett. 84, 3718 �2000�.
18 O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Phys. Rev.

Lett. 88, 067203 �2002�.
19 O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Phys. Rev. B

66, 064403 �2002�.
20 J.-H. Chung, M. Matsuda, S.-H. Lee, K. Kakurai, H. Ueda, T. J.

Sato, H. Takagi, K.-P. Hong, and S. Park, Phys. Rev. Lett. 95,
247204 �2005�.

21 S. H. Lee, G. Gasparovich, C. Broholm, M. Matsuda, J.-H.
Chung, Y. J. Kim, H. Ueda, G. Xu, P. Zschak, K. Kakurai, H.
Takagi, W. Ratcliff II, T. H. Kim, and S. W. Cheong, J. Phys.:
Condens. Matter 19, 145259 �2007�.

22 H. Martinho, N. O. Moreno, J. A. Sanjurjo, C. Rettori, A. J.
Garcia-Adeva, D. L. Huber, S. B. Oseroff, W. Ratcliff, S. W.
Cheong, P. G. Pagliuso, J. L. Sarrao, and G. B. Martins, Phys.
Rev. B 64, 024408 �2001�.

23 H. Ohta, S. Okubo, H. Kikuchi, and S. Ono, Can. J. Phys. 79,
1387 �2001�.

24 R. Plumier, M. Lecomte, and M. Sougi, J. Phys. �France� Lett.
38, L149 �1977�.

25 A. E. Jacobs, S. H. Curnoe, and R. C. Desai, Phys. Rev. B 68,
224104 �2003�.

26 E. K. H. Salje, S. A. Hayward, and W. T. Lee, Acta Crystallogr.,
Sect. A: Found. Crystallogr. 61, 3 �2005�.

27 A. J. García-Adeva and D. L. Huber, Phys. Rev. Lett. 85, 4598
�2000�.

28 A. F. Andreev and V. I. Marchenko, Sov. Phys. Usp. 130, 39
�1980�.

29 L. A. Prozorova, V. I. Marchenko, and Yu. V. Krasnyak, JETP
Lett. 41, 637 �1985�.

30 I. A. Zaliznyak, V. I. Marchenko, S. V. Peterov, L. A. Prozorova,
and A. V. Chubukov, JETP Lett. 47, 211 �1988�.

31 S. S. Sosin, A. I. Smirnov, L. A. Prozorova, G. Balakrishnan,
and M. E. Zhitomirsky, Phys. Rev. B 73, 212402 �2006�.

32 A. Olés, J. Phys. Colloq. 32, C1-328 �1971�.

GLAZKOV et al. PHYSICAL REVIEW B 79, 024431 �2009�

024431-10


